LEFT-FORBIDDING COOPERATING DISTRIBUTED GRAMMAR SYSTEMS

Filip Goldefus
Doctoral degree programme (1), FIT BUT
E-mail: igoldefu@fit.vutbr.cz
Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract

In a left-forbidding grammar, a set of nonterminals is attached to every context-free production, and such a production can rewrite a nonterminal if no symbol from the attached set occurs to the left of the rewritten nonterminal in the sentential form. The present paper discusses left-forbidding cooperating distributed grammar systems that work in the t-mode and have leftforbidding grammars as their components. It demonstrates that with two components, these systems generate the family of recursively enumerable languages.

1 INTRODUCTION

The present paper discusses cooperating distributed grammar systems working in the t-mode (see [1] for details). In a left-forbidding grammar, a set of nonterminals is attached to every context-free production. Such a production can rewrite a nonterminal provided that no symbol from its attached set occurs to the left of the rewritten nonterminal in the sentential form.

We study the generative power of left-forbidding cooperating distributed grammar systems, whose components are left-forbidding grammars. In what follows with two components, they generate the family of recursively enumerable languages. This main result of the present paper is of some interest because two-component cooperating distributed grammar systems whose components are ordinary context-free grammars generate only the family of context-free languages [1].

2 PRELIMINARIES AND DEFINITIONS

This paper assumes that the reader is familiar with formal language theory (see [4]). For an alphabet V, V^{*} represents the free monoid generated by V. The unit of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$. For $w \in V^{*},|w|$ denotes the length of $w, \operatorname{alph}(w)$ denotes the set of letters occurring in w, and for all $i=1, \ldots,|w|, w_{i}$ denotes the i th symbol of w. Denote the family of recursively enumerable languages by $\mathscr{L}_{R E}$.
A state grammar (see [3]) is a sextuple $G=\left(N, T, Q, P, S, q_{0}\right)$, where N is a nonterminal alphabet, T is a terminal alphabet, $V=N \cup T, Q$ is a finite set of states, N, T, Q are pairwise disjoint, $S \in N$ is the start symbol, $q_{0} \in Q$ is the start state, and P is a finite set of productions
of the form $(A, p) \rightarrow(x, q)$, where $p, q \in Q, A \in N$, and $x \in V^{*}$. Let $\operatorname{lhs}((A, p) \rightarrow(x, q))$ and $r h s((A, p) \rightarrow(x, q))$ denote (A, p) and (x, q), respectively.

For $u, v \in V^{*}, u \Rightarrow v$ provided that $u=(r A s, p), v=(r x s, q)$, for some $r, s \in V^{*},(A, p) \rightarrow(x, q) \in$ P, and for every $(B, p) \rightarrow(y, t) \in P, B \notin \operatorname{alph}(r)$.

In the standard manner, extend \Rightarrow to \Rightarrow^{n}, for $n \geq 0, \Rightarrow^{+}$, and \Rightarrow^{*}. The language generated by G is defined as $L(G)=\left\{w \in T^{*}:\left(S, q_{0}\right) \Rightarrow^{*}(w, q)\right.$ for some $\left.q \in Q\right\}$. Denote the family of languages generated by state grammars as $\mathscr{L}_{S T}$. And $\mathscr{L}_{S T}=\mathscr{L}_{R E}$ (see [2]).

A left-forbidding grammar is a quadruple $G=(N, T, P, S)$, where N is a nonterminal alphabet, T is a terminal alphabet such that $N \cap T=\emptyset, V=N \cup T, S \in N$ is the start symbol, and P is a finite set of productions of the form $(A \rightarrow x, W)$, where $A \in N, x \in V^{*}$, and $W \subseteq N$.
For $u, v \in V^{*}$ and $(A \rightarrow x, W) \in P, u A v \Rightarrow u x v$ provided that $\operatorname{alph}(u) \cap W=\emptyset$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, for $n \geq 0, \Rightarrow^{+}$, and \Rightarrow^{*}. The language generated by G is defined as $L(G)=\left\{w \in T^{*}: S \Rightarrow^{*} w\right\}$.

Let G be a left-forbidding grammar. Write $u \Rightarrow_{t} v$ in G if $u \Rightarrow^{*} v$ in G and for no $w \in V^{*}, v \Rightarrow w$ in G.

Let $n \geq 1$. A left-forbidding cooperating distributed grammar system is an $(n+3)$-tuple $\Gamma=$ $\left(N, T, P_{1}, \ldots, P_{n}, S\right)$, where for $i=1, \ldots, n, G_{i}=\left(N, T, P_{i}, S\right)$ is a left-forbidding grammar. For $u, v \in V^{*}, u \Rightarrow_{i} v$ denotes a derivation step made by a production from P_{i}.
Γt-generates $z \in T^{*}$ if and only if, for some $l \geq 1$, there are $\alpha_{i} \in V^{*}$, for $i=1, \ldots, l$, such that $\alpha_{i} \Rightarrow_{t} \alpha_{i+1}$ in $H_{i}, H_{i} \in\left\{G_{1}, \ldots, G_{n}\right\}, \alpha_{1}=S$ and $\alpha_{l}=z$. Symbolically written as $S \Rightarrow^{t} z$.

The t-language generated by Γ is defined as $L(\Gamma, t)=\left\{w \in T^{*}: S \Rightarrow^{t} w\right\}$. Denote the family of languages t-generated by left-forbidding cooperating distributed grammar systems as \mathscr{L}_{t}. For $u, v \in V^{*}, u \Rightarrow_{i}^{t} v$ if $u \Rightarrow_{t} v$ in G_{i}.

3 MAIN RESULT

Theorem 1. $\mathscr{L}_{t}=\mathscr{L}_{R E}$.
Proof. Clearly, by Church's thesis, $\mathscr{L}_{t} \subseteq \mathscr{L}_{R E}$.
To prove the other inclusion, let L be a recursively enumerable language. There is a state grammar $G=\left(N, T, Q, P, S, q_{0}\right)$ such that $L(G)=L$. Construct a left-forbidding cooperating distributed grammar system $\Gamma=\left(N_{\Gamma}, T, P_{1}, P_{2}, S^{\prime}\right)$ with $N_{\Gamma}=N \cup N_{1} \cup N_{2} \cup N_{3}$, where

$$
\begin{aligned}
& N_{1}=\{[x, p, q, i]: x \in V \cup\{\varepsilon\}, p, q \in Q, i \in\{1,2,3\}\}, \\
& N_{2}=\{\langle w\rangle,[\langle w\rangle, p, q, i]:(X, p) \rightarrow(w, q) \in P\}, \\
& N_{3}=\{\widehat{x}: x \in V \cup\{\varepsilon\}\} \cup\{\widehat{\widehat{w}\rangle}:(X, p) \rightarrow(w, q) \in P\} \cup\{\langle\text { BLOCK }\rangle\} .
\end{aligned}
$$

P_{1} is constructed as follows:

1. For all $r \in Q$, add $\left(S^{\prime} \rightarrow\left[S, q_{0}, r, 3\right], \emptyset\right)$ to P_{1}.
2. For $[B, p, q, 1] \in N_{1}$, if there is no $(B, p) \rightarrow(w, q) \in P$, add $([B, p, q, 1] \rightarrow[B, p, q, 2], \emptyset)$ to P_{1}.
3. For $(B, q) \rightarrow(w, h) \in P$, add $(B \rightarrow\langle w\rangle, W)$ and $(\widehat{B} \rightarrow \widehat{\langle w\rangle}, W)$ to P_{1}, where
$W=\left\{[x, r, s, i],[\langle w\rangle, r, s, i],\langle w\rangle \in N_{\Gamma}: i=1\right\} \cup\left\{[x, r, s, i] \in N_{1}: r \neq q\right.$ or $s \neq h$, and $\left.i=2\right\} \cup\{X \in$ $N:(X, q) \rightarrow(w, r) \in P\}$.
4. For $(B, q) \rightarrow(w, h) \in P$, add $([B, q, h, 1] \rightarrow[\langle w\rangle, q, h, 1], \emptyset)$ and $([B, q, h, 3] \rightarrow[\langle w\rangle, q, h, 3], \emptyset)$ to P_{1}.
5. For $a \in T \cup\{\varepsilon\}, q, h \in Q, i=1,3$, add $([a, q, h, i] \rightarrow a, \emptyset)$ to P_{1}.
6. For $a \in T \cup\{\varepsilon\}$ add $\left(\widehat{a} \rightarrow a, N_{\Gamma}\right)$ to P_{1}.
7. For $a \in V \cup\{\varepsilon\}$, add $\left(\widehat{a} \rightarrow\langle B L O C K\rangle,\left\{[\langle w\rangle, q, h, i],\langle w\rangle \in N_{2}: i=1\right\}\right.$ to P_{1}.
P_{2} is constructed as follows:
1^{\prime}. For all $p, q, r \in Q$ and $x \in V \cup\{\varepsilon\}$, add $([x, p, q, 2] \rightarrow[x, q, r, 1], \emptyset)$ to P_{2}.
2' $^{\prime}$. For $(B, q) \rightarrow(w, h) \in P$, add $\left(\langle w\rangle \rightarrow w,\left\{[x, r, s, i] \in N_{1}: i=2\right\}\right)$ to P_{2}.
3'. For $(B, q) \rightarrow(w, h) \in P$ and $r \in Q$, add
a) for $|w| \geq 2,\left([\langle w\rangle, q, h, 1] \rightarrow\left[w_{1}, h, r, 1\right] w_{2} \ldots w_{|w|-1} \widehat{w_{|w|}}, \emptyset\right)$ to P_{2};
b) for $|w| \leq 1,([\langle w\rangle, q, h, 1] \rightarrow[w, h, r, 1], \emptyset)$ to P_{2}.

4'. For $(B, q) \rightarrow(w, h) \in P$ and $r \in Q$, add
a) for $|w| \geq 2,\left([\langle w\rangle, q, h, 3] \rightarrow\left[w_{1}, h, r, 1\right] w_{2} \ldots w_{|w|-1} \widehat{w_{|w|}}, \emptyset\right)$ to P_{2};
b) for $|w| \leq 1,([\langle w\rangle, q, h, 3] \rightarrow[w, h, r, 3], \emptyset)$ to P_{2}.
5^{\prime}. For $(B, q) \rightarrow(w, h) \in P$, add
a) for $|w| \geq 2,\left(\widehat{\langle w\rangle} \rightarrow w_{1} \ldots w_{|w|-1} \widehat{w_{|w|}},\left\{[x, r, s, i] \in N_{1}: i=2\right\}\right)$ to P_{2};
b) for $\left.|w| \leq 1,(\widehat{w}\rangle \rightarrow \widehat{w},\left\{[x, r, s, i] \in N_{1}: i=2\right\}\right)$ to P_{2}.

6'. For all $\widehat{x} \in N_{3}$, add $\left(\widehat{x} \rightarrow\langle B L O C K\rangle,\left\{[y, r, s, i] \in N_{1}: i \in\{1,2\}\right\}\right)$ to P_{2}.
To prove that $L(G) \subseteq L(\Gamma)$, consider a derivation step $\left(\alpha^{\prime}, q\right) \Rightarrow\left(\beta^{\prime}, h\right)$ in G. Let $\alpha^{\prime}=a_{1} a_{2} \ldots a_{n}$ and $\beta^{\prime}=b_{1} b_{2} \ldots b_{m}$, where for $i=1, \ldots, n, j=1, \ldots, m, a_{i}, b_{j} \in V$. We prove that $\alpha \Rightarrow^{+} \beta$ in Γ, for $\alpha=\left[x_{1}, q, r, 1\right] x_{2} \ldots x_{l-1} \widehat{x}_{l}$, or $\alpha=\left[a_{1}, q, r, 3\right]$ if $\left|\alpha^{\prime}\right|=1$, where $l \geq 2, x_{1}, x_{l} \in V \cup\{\varepsilon\}$, $x_{i} \in V$, for $i=2, \ldots, l-1$, and for some $r \in Q$, such that $x_{1} x_{2} \ldots x_{l}=a_{1} a_{2} \ldots a_{n}$.
Assume that $\alpha^{\prime} \Rightarrow \beta^{\prime}$ by a production $\left(a_{i}, q\right) \rightarrow(w, h) \in P$. Then, $\left(a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{n}, q\right) \Rightarrow$ $\left(a_{1} \ldots a_{i-1} w a_{i+1} \ldots a_{n}, h\right)$ in G.
(1) If $i=1$ and $|w| \geq 2$, then $\left[a_{1}, q, h, 3\right] \Rightarrow_{1}[\langle w\rangle, q, h, 3] \Rightarrow_{2}\left[w_{1}, h, r, 1\right] w_{2} \ldots w_{|w|-1} \widehat{w_{|w|}}$ in Γ by productions (4) and (4'a), for some $r \in Q$.
(2) If $i=1$ and $|w| \leq 1$, then $\left[a_{1}, q, h, 3\right] \Rightarrow_{1}[\langle w\rangle, q, h, 3] \Rightarrow_{2}[w, h, r, 3]$ in Γ by productions (4) and (4'b), for some $r \in Q$.
(3) If $i=1$ and $x_{1}=a_{1}$, then $\left[x_{1}, q, h, 1\right] x_{2} \ldots x_{l-1} \widehat{x_{l}} \Rightarrow_{1}[\langle w\rangle, q, h, 1] x_{2} \ldots x_{l-1} \widehat{x_{l}}$
$\Rightarrow_{2}\left[w_{1}, h, r, 1\right] w_{2} \ldots w_{|w|} x_{2} \ldots x_{l-1} \widehat{x_{l}}$ in Γ by productions (4) and (3'), for some $r \in Q$, where for $w=\varepsilon$ we have $w_{1}=\varepsilon$.
(4) If $1<i<n$, or $i=1$ and $x_{1} \neq a_{1}$, or $i=n$ and $x_{l} \neq a_{n}$, then

$$
\begin{array}{llll}
{\left[x_{1}, q, h, 1\right] x_{2} \ldots x_{l-1} \widehat{x_{l}}} & \Rightarrow_{1} & {\left[x_{1}, q, h, 2\right] x_{2} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{l-1} \widehat{x}_{l}} & \Rightarrow_{1} \\
{\left[x_{1}, q, h, 2\right] x_{2} \ldots x_{i-1}\langle w\rangle x_{i+1} \ldots x_{l-1} \widehat{x}_{l}} & \Rightarrow_{2} & {\left[x_{1}, h, r, 1\right] x_{2} \ldots x_{i-1}\langle w\rangle x_{i+1} \ldots x_{l-1} \widehat{x}_{l}} & \Rightarrow_{2} \\
{\left[x_{1}, h, r, 1\right] x_{2} \ldots x_{i-1} w x_{i+1} \ldots x_{l-1} \widehat{x}_{l}} & &
\end{array}
$$

in Γ by productions (2), (3), (1'), and (2'), for some $r \in Q$. Recall that G rewrites the leftmost nonterminal rewritable in the current sentential form.
(5) If $i=n$ and $x_{l}=a_{n}$, then

$$
\begin{array}{llll}
{\left[x_{1}, q, h, 1\right] x_{2} \ldots x_{l-1} \widehat{x_{l}}} & \Rightarrow_{1} & {\left[x_{1}, q, h, 2\right] x_{2} \ldots x_{l-1} \widehat{x_{l}}} & \Rightarrow_{1} \\
{\left[x_{1}, q, h, 2\right] x_{2} \ldots x_{l-1} \widehat{\langle w\rangle}} & \Rightarrow_{2} & {\left[x_{1}, h, r, 1\right] x_{2} \ldots x_{l-1} \widehat{\langle w\rangle}} & \Rightarrow_{2} \\
{\left[x_{1}, h, r, 1\right] x_{2} \ldots x_{l-1} w_{1} \ldots w_{|w|-1} \widehat{w_{|w|}}} &
\end{array}
$$

in Γ by productions (2), (3), (1'), and (5'), for some $r \in Q$, where for $w=\varepsilon$ we have $\widehat{w_{1}}=\widehat{\varepsilon}$. The proof then follows by induction.
Assume that $a_{1} \ldots a_{n} \in T^{*}$. Then, $\left[a_{1}, q, h, 3\right] \Rightarrow_{1} a_{1}$ by a production constructed in (5), and $\left[x_{1}, q, h, 1\right] x_{2} \ldots x_{l-1} \widehat{x}_{l} \Rightarrow{ }_{1}^{t} x_{1} x_{2} \ldots x_{l-1} x_{l}$ by productions constructed in (5) and (6).
Clearly, Γ simulates a derivation of G so that it starts by a production constructed in (1) and then it continues as shown above.

To prove that $L(\Gamma) \subseteq L(G)$, consider a terminating derivation in Γ. Such a derivation is of the form $S \Rightarrow{ }_{1}^{t} \ldots \Rightarrow{ }_{2}^{t} x_{0} \Rightarrow{ }_{1}^{t} x_{1} \Rightarrow{ }_{2}^{t} x_{2} \Rightarrow{ }_{1}^{t} \ldots \Rightarrow_{2}^{t} w^{\prime} \Rightarrow{ }_{1}^{t} w$, for some $w \in T^{*}$. Consider a subderivation, $x_{0} \Rightarrow{ }_{1}^{t} x_{1} \Rightarrow_{2}^{t} x_{2}$, and examine the forms of this subderivation.
Assume that $x_{0}=[a, p, q, 3]$. If $a \in N$, then only a production constructed in (4), corresponding to $(a, p) \rightarrow(u, q) \in P$, is applicable.
$|u| \geq 2$: Then, after the production constructed in (4), no production from P_{1} is applicable and, only a production constructed in (4 ' a) is applicable. Thus, $[a, p, q, 3] \Rightarrow_{1}^{t}[\langle u\rangle, p, q, 3] \Rightarrow_{2}^{t}$ $\left[u_{1}, q, h, 1\right] u_{2} \ldots u_{|u|-1} \widehat{u_{|u|}}$ in Γ.
$|u| \leq 1$: Then, after the production constructed in (4), no production from P_{1} is applicable, and only a production constructed in ($4^{\prime} \mathrm{b}$) is applicable. Thus, $[a, p, q, 3] \Rightarrow{ }_{1}^{t}[\langle u\rangle, p, q, 3] \Rightarrow{ }_{2}^{t}$ $[u, q, h, 3]$ in Γ.

Clearly, $(a, p) \Rightarrow(u, q)$ in G. If $a \in T \cup\{\varepsilon\}$, then only a production constructed in (5) is applicable. Thus, $[a, p, q, 3] \Rightarrow{ }_{1}^{t} a$.
Assume that $x_{0}=\left[a_{1}, p, q, 1\right] a_{2} \ldots a_{n-1} \widehat{a_{n}}$. If $a_{1} \in N$, then:

1. Assume that $\left(a_{1}, p\right) \rightarrow(u, q) \in P$. Then, no productions constructed in (2) and (3) are applicable because all nonterminals of the form $[x, r, s, 1] \in N_{\Gamma}$ are included in the forbidding set of productions constructed in (3). Thus, only a production constructed in (4), corresponding to $\left(a_{1}, p\right) \rightarrow(u, q)$, is applicable. Then, only a production constructed in (3^{\prime}) is applicable. Thus, $\left[a_{1}, p, q, 1\right] a_{2} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1}^{t}[\langle u\rangle, p, q, 1] a_{2} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{2}^{t}\left[u_{1}, q, h, 1\right] u_{2} \ldots u_{|u|} a_{2} \ldots a_{n-1} \widehat{a_{n}}$, where $u_{1}=\varepsilon$ if $|u|=0$. Again, $\left(a_{1} \ldots a_{n}, p\right) \Rightarrow\left(u a_{2} \ldots a_{n}, q\right)$ in G.
2. Assume that there is no production $\left(a_{1}, p\right) \rightarrow(v, q)$ in P. Then, only a production constructed in (2) is applicable. Then, only a production constructed in (3) is applicable, corresponding to $\left(a_{j}, p\right) \rightarrow(u, q) \in P$, for some $1<j \leq n$, and such that there is no applicable production $\left(a_{k}, p\right) \rightarrow(w, t) \in P$, for all $k<j$; of course, if there is no such production, then a production constructed in (7) blocks the derivation. Then, only a production constructed in (1^{\prime}) is applica-
ble. Thus, $\left[a_{1}, p, q, 1\right] a_{2} \ldots a_{j-1} a_{j} a_{j+1} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1}\left[a_{1}, p, q, 2\right] a_{2} \ldots a_{j-1} a_{j} a_{j+1} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1}$ $\left[a_{1}, p, q, 2\right] a_{2} \ldots a_{j-1}\langle u\rangle a_{j+1} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{2}\left[a_{1}, q, h, 1\right] a_{2} \ldots a_{j-1}\langle u\rangle a_{j+1} \ldots a_{n-1} \widehat{a_{n}}$.
(i) Assume that $j<n$. Then, only a production constructed in (2^{\prime}) is applicable. Thus,

$$
\left[a_{1}, q, h, 1\right] a_{2} \ldots a_{j-1}\langle u\rangle a_{j+1} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{2}^{t} \quad\left[a_{1}, q, h, 1\right] a_{2} \ldots a_{j-1} u a_{j+1} \ldots a_{n-1} \widehat{a_{n}}
$$

Again, $\left(a_{1} \ldots a_{n}, p\right) \Rightarrow\left(a_{1} \ldots a_{j-1} u a_{j+1} \ldots a_{n}, q\right)$ in G.
(ii) Assume that $j=n$. Then, only a production constructed in (5^{\prime}) is applicable. Thus,

$$
\left[a_{1}, q, h, 1\right] a_{2} \ldots a_{n-1} \widehat{\langle u\rangle} \Rightarrow{ }_{2}^{t} \quad\left[a_{1}, q, h, 1\right] a_{2} \ldots u_{1} \ldots u_{|u|-1} \widehat{u_{|u|}} .
$$

In case $|u|=0$, we have $u_{|u|}=\varepsilon$. Again, $\left(a_{1} \ldots a_{n-1} a_{n}, p\right) \Rightarrow\left(a_{1} \ldots a_{n-1} u, q\right)$ in G.
If $a_{1} \in T \cup\{\varepsilon\}$, then only productions constructed in (2), (5) and (7) are applicable.

1. Let, for all $i=2, \ldots, n, a_{i} \in T \cup\{\varepsilon\}$. Consider a production constructed in (2), then

$$
\left[a_{1}, p, q, 1\right] a_{2} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1} \quad\left[a_{1}, p, q, 2\right] a_{2} \ldots a_{n-1} \widehat{a_{n}}
$$

and only a production constructed in (7) is applicable. However, these productions block the derivation. Thus, only a production constructed in (5) is now applicable in the terminal derivation, i.e., $\left[a_{1}, p, q, 1\right] a_{2} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1} a_{1} a_{2} \ldots a_{n-1} \widehat{a_{n}}$. Then, only productions constructed in (6) and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed in (6), i.e. $a_{1} a_{2} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1}^{t} a_{1} a_{2} \ldots a_{n-1} a_{n}$, which finishes the derivation.
2. Let there be $i \in\{2, \ldots, n\}$ such that $a_{i} \in N$. Consider a production constructed in (2) is applied first, then the derivation continues as in 2 above because there is no production $\left(a_{1}, p\right) \rightarrow(v, q)$ in P.

Consider a production constructed in (5) is applied first, then only productions constructed in (3) and (7) are applicable. Again, (7) blocks the derivation, thus consider a production constructed in (3). Then, $a_{1} \ldots a_{k} \ldots a_{n-1} \widehat{a_{n}} \Rightarrow_{1}^{t} a_{1} \ldots\langle w\rangle \ldots a_{n-1} \widehat{a_{n}}$ and some other productions constructed in (3) are applicable. After this, no production from P_{1} is applicable and only productions constructed in (2^{\prime}), (5^{\prime}), and (6^{\prime}) are applicable. In all cases, production (6^{\prime}) has to be appliedthe derivation is blocked. The proof then follows by induction.

Any derivation of Γ starts by a production constructed in (1), $S^{\prime} \Rightarrow_{1}\left[S, q_{0}, r, 3\right]$, for some $r \in Q$, and then continues as proved above.

REFERENCES

[1] Jürgen Dassow, Gheorghe Păun, and Grzegorz Rozenberg. Grammar systems. In Handbook of formal languages, Vol. 2, pages 155-213. Springer-Verlag, Berlin, 1997.
[2] G. Horvat and A. Meduna. On state grammars. Acta Cybernetica, pages 4-14, 1988.
[3] T. Kasai. An hierarchy between context-free and context-sensitive languages. Journal of Computer and System Sciences, 4(5):492-508, 1970.
[4] A. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London, 2005.

